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Abstract—Recent advances in cloud technology have turned
the idea of Cloud Gaming into a reality. Cloud Gaming, in its
simplest form, renders an interactive gaming application remotely
in the cloud and streams the scenes as a video sequence back
to the player over the Internet. This is an advantage for less
powerful computational devices that are otherwise incapable of
running high quality games. Such industrial pioneers as Onlive
and Gaikai have seen success in the market with large user bases.
In this article, we conduct a systematic analysis of state-of-the-
art cloud gaming platforms, and highlight the uniqueness of their
framework design. We also measure their real world performance
with different types of games, for both interaction latency
and streaming quality, revealing critical challenges toward the
widespread deployment of Cloud Gaming.

I. INTRODUCTION

Through the utilization of elastic resources and widely
deployed data-centers, cloud computing has provided countless
new opportunities for both new and existing applications.
Existing applications, from file sharing and document syn-
chronization to media streaming, have experienced a great
leap forward in terms of system efficiency and usability
through leveraging cloud computing platforms. Much of these
advances have come from exploring the cloud’s massive
resources with computational offloading and reducing user
access latencies with strategically placed cloud data-centers.
Recently, advances in cloud technology have expanded to
allow offloading not only of traditional computations but also
of such more complex tasks as high definition 3D rendering,
which turns the idea of Cloud Gaming into a reality. Cloud
gaming, in its simplest form, renders an interactive gaming
application remotely in the cloud and streams the scenes as a
video sequence back to the player over the Internet. A cloud
gaming player interacts with the application through a thin
client, which is responsible for displaying the video from
the cloud rendering server as well as collecting the player’s
commands and sending the interactions back to the cloud.
Figure 1 shows a high level architectural view of such a cloud
gaming system with thin clients and cloud-based rendering.

Onlive [1] and Gaikai [2] are two industrial pioneers of
cloud gaming, both having seen great success with multi-
million user bases. The recent 380 millon dollar purchase of
Gaikai by Sony [3], an industrial giant in digital entertain-
ment and consumer electronics, shows that cloud gaming is
beginning to move into the mainstream. From the perspective
of industry, cloud gaming can bring immense benefits by
expanding the user base to the vast number of less-powerful

devices that support thin clients only, particularly smartphones
and tablets. As an example, the recommended system config-
uration for Battlefield 3, a highly popular first-person shooter
game, is a quad-core CPU, 4 GB RAM, 20 GB storage space,
and a graphics card with at least 1GB RAM (e.g., NVIDIA
GEFORCE GTX 560 or ATI RADEON 6950), which alone
costs more than $500. The newest tablets (e.g., Apple’s iPad
with Retina display and Google’s Nexus 10) cannot even meet
the minimum system requirements that need a dual-core CPU
over 2.4 GHz, 2 GB RAM, and a graphics card with 512 MB
RAM, not to mention smartphones of which the hardware is
limited by their smaller size and thermal control. Furthermore,
mobile terminals have different hardware/software architecture
from PCs, e.g., ARM rather than x86 for CPU, lower memory
frequency and bandwidth, power limitations, and distinct op-
erating systems. As such, the traditional console game model
is not feasible for such devices, which in turn become targets
for Gaikai and Onlive. Cloud gaming also reduces customer
support costs since the computational hardware is now under
the cloud gaming provider’s full control, and offers better
Digital Rights Management (DRM) since the codes are not
directly executed on a customer’s local device.

However, cloud gaming remains in its early stage and there
remain significant theoretical and practical challenges towards
its widespread deployment. In this article, we conduct a
systematic analysis of state-of-the-art cloud gaming platforms,
both in terms of their design and their performance. We first of-
fer an intuitive description of the unique design considerations
and challenges addressed by existing platforms. We highlight
their framework design. Using Onlive as a representative, we
then measure its real world performance with different types
of games, for both interaction latency and streaming quality.
Finally, we discuss the future of cloud gaming as well as issues
yet to be addressed.

II. CLOUD GAMING: ISSUES AND CHALLENGES

From low latency live video streaming to high performance
3D rendering, cloud gaming must bring together a plethora
of bleeding edge technologies to function. We begin our
analysis with the important design considerations, which are
currently being addressed by cloud gaming providers. A cloud
gaming system must collect a player’s actions, transmit them
to the cloud server, process the action, render the results,
encode/compress the resulting changes to the game-world,
and stream the video (game scenes) back to the player. To



Fig. 1. Cloud Gaming Overview

Example Game Type Perspective Delay Threshold
First Person Shooter (FPS) First Person 100 ms
Role Playing Game (RPG) Third-Person 500 ms
Real Time Strategy (RTS) Omnipresent 1000 ms

TABLE I
DELAY TOLERANCE IN TRADITIONAL GAMING

ensure interactivity, all of these serial operations must happen
in the order of milliseconds. Intuitively, this amount of time,
which is defined as interaction delay, must be kept as short
as possible in order to provide a rich experience to the cloud
game players. However, there are tradeoffs: the shorter the
player’s tolerance for interaction delay, the less time the system
has to perform such critical operations as scene rendering and
video compression. Also, the lower this time threshold is, the
more likely a higher network latency can negatively affect a
player’s experience of interaction. With this is mind, we start
our design discussion with delay tolerance.

A. Interaction Delay Tolerance

Studies on traditional gaming systems have found that dif-
ferent styles of games have different thresholds for maximum
tolerable delay [4]. Table I summarizes the maximum delay
that an average player can tolerate before the Quality of
Experience (QoE) begins to degrade. As a general rule, games
that are played in the first person perspective, such as the
shooter game Counter Strike, become noticeably less playable
when actions are delayed by as little as 100 ms. This low
delay tolerance is because such first person games tend to be
action-based, and players with a higher delay tend to have
a disadvantage [5]. In particular, the outcome of definitive
game changing actions such as who “pulled the trigger” first

can be extremely sensitive to the delay in an action-based
First Person Shooter (FPS) game. Third person games, such
as Role Playing Games (RPG), and many massively multi-
player games, such as World of Warcraft, can often have a
higher delay tolerance of up to 500 ms. This is because a
player’s commands in such games, e.g., use item, cast spell, or
heal character, are generally executed by the player’s avatar;
there is often an invocation phase, such as chanting magic
words before a spell is cast, and hence the player does not
expect the action to be instantaneous. The actions must still
be registered in a timely manner, since the player can become
frustrated if the interaction delay causes them a negative
outcome, e.g., they healed before an enemy attack but still
died because their commands were not registered by the game
in time. The last category of games are those played in an
“omnipresent” view, i.e., a top down view looking at many
controllable entities. Examples are Real Time Strategy (RTS)
games like Star Craft and simulation games such as The Sims.
Delays of up to 1000 ms can be acceptable to these styles of
games since the player often controls many entities and issues
many individual commands, which often take seconds or even
minutes to complete. In a typical RTS game, a delay of up to
1000 ms for a build unit action that takes over a minute will
hardly be noticed by the player.

Although there is much similarity between interaction delay
tolerance for traditional gaming and cloud gaming, we must
stress the following critical distinctions. First, traditionally, the
interaction delay was only an issue for multi-player online
gaming systems, and was generally not considered for single
player games. Cloud gaming drastically changes this; now
all games are being rendered remotely and streamed back
to the player’s thin client. As such, we must be concerned
with interaction delay even for a single player game. Also,
traditional online gaming systems often hide the effects of
interaction delay by rendering the action on a player’s local
system before it ever reaches the gaming server. For example,
a player may instruct the avatar to move and it immediately
begins the movement locally; however the gaming server may
not receive the update on the position for several milliseconds.
Since cloud gaming offloads its rendering to the cloud, the thin
client no longer has the ability to hide the interaction delay
from the player. Visual cues such as mouse cursor movement
can be delayed by up to 1000 ms, making it impractical to
expect the player will be able to tolerate the same interaction
delays in cloud gaming as they do in traditional gaming
systems. We conjecture that the maximum interaction delay
for all games hosted in a cloud gaming context should be
at most 200 ms. Other games, specifically such action-based
games as first person shooters likely require less than 100 ms
interaction delay in order not to affect the players QoE. Recent
research using subjective tests have indicated the that this is
indeed the case [6].

B. Video Streaming and Encoding

We next examine the video streaming and encoding needs
of a cloud gaming system. Cloud gaming’s video streaming



Fig. 2. Framework of a cloud gaming platform

requirements are quite similar to another classical application,
namely, live media streaming. Both cloud gaming and live
media streaming must quickly encode/compress incoming
video and distribute it to end users. In both, we are only
concerned with a small set of the most recent video frames and
do not have access to future frames before they are produced,
implying encoding must be done with respect to very few
frames.

However, live video streaming and cloud gaming also have
important differences. First, compared to live media streaming,
cloud gaming has virtually no capacity to buffer video frames
on the client side. This is because, when a player issues a
command to the local thin client, the command must traverse
the Internet to the cloud, be processed by the game logic,
rendered by the processing unit, compressed by the video
encoder and streamed back to the player. Given that this must
all be done in under 100 - 200 ms, it is apparent that there
is not much margin for a buffer. Live media streaming on the
other hand can afford a buffer of hundreds of milliseconds or
even a few seconds with very little loss to the QoE of the end
user.

The sensitive real time encoding needs of cloud gaming
make the choice of video encoder of paramount importance
for any cloud gaming provider. Currently, the major cloud
gaming providers Gaikai and Onlive both use versions of the
H.264/MPEG-4 AVC encoder. Gaikai uses a software based
approach for encoding where as Onlive is using specialized
hardware to compress its cloud gaming video streams. In either
case the choice of the H.264 encoder is motivated by the fact
that the encoder not only has a very high compression ratio
but also that it can be configured to work well with stringent
real time demands.

III. CLOUD GAMING FRAMEWORK

Based on the design considerations we have been dis-
cussing, we now outline a generic framework for a cloud
gaming system. Figure 2 shows the various functions and
modules required by a cloud gaming system. As can be

observed, a player’s commands must be sent over the Internet
from its thin client to the cloud gaming platform. Once the
commands reach the cloud gaming platform they are converted
into appropriate in-game actions, which are interpreted by the
game logic into changes in the game world. The game world
changes are then processed by the cloud system’s graphical
processing unit (GPU) into a rendered scene. The rendered
scene must be compressed by the video encoder, and then
sent to a video streaming module, which delivers the video
stream back to the thin client. Finally, the thin client decodes
the video and displays the video frames to the player.

To confirm the representability of this generic framework,
we have conducted a traffic measurement and analysis from the
edge of four networks which are located in the United States,
Canada, China and Japan. We recorded the packet flow of both
Gaikai and Onlive. After that, we used Wireshark to extract
packet-level details, which reveal the existence of thin clients
and their interactions with remote cloud servers. We also
discover that Gaikai is implemented using two public clouds,
namely Amazon EC2 and Limelight. When a player selects a
game on Gaikai, an EC2 virtual machine will first deliver the
Gaikai game client to the player. After that, it forwards the IP
addresses of game proxies that are ready to run the selected
games to the players. The player will then select one game
proxy to run the game. For multiplayer online games, these
game proxies will also forward the players’ operations to game
servers and send the related information/reactions back to the
players. Onlive’s workflow is quite similar, but is implemented
with a private cloud environment. Using public clouds enables
lower implementation costs and higher scalability; yet a private
cloud may offer better performance and customization that
fully unleash the potentials of cloud for gaming. Hence, we
use Onlive in the following measurement and analysis.

IV. REAL WORLD PERFORMANCE: ONLIVE

Despite some recent financial issues, Onlive was one of the
first to enter into the North American market and offers one of
the most advanced implementations of cloud gaming available
for analysis. A recent official announcement from Onlive put
the number of subscribers at roughly 2.5 million, with an
active user base of approximately 1.5 million. We evaluate the
critically acclaimed game Batman Arkham Asylum on Onlive
and compare its performance to a copy of the game running
locally. In our analysis, we look at two important metrics,
namely, the interaction delay (response time) and image qual-
ity. Our hardware remains consistent for all experiments. We
run Batman through an Onlive thin client as well as locally on
our local test system. The test system contains an AMD 7750
dual core processor, 4 GB of ram, a 1-terabyte 7200 RPM hard
drive, and an AMD Radeon 3850 GPU. The network access
is provided through a wired connection to a residential cable
modem with a maximum connection speed of 25 Mb/s for
download and 3 Mb/s for upload. Our system specifications
and network connections exceed the recommended standards
both for Onlive and the local copy of the game, which ensures
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Fig. 3. Interaction Delay in Onlive

Measurement Processing Time (ms) Cloud Overhead (ms)
Local Render 36.7 na
Onlive base 136.7 100.0

Onlive (+10 ms) 143.3 106.7
Onlive (+20 ms) 160.0 123.3
Onlive (+50 ms) 160.0 123.3
Onlive (+75 ms) 151.7 115.0

TABLE II
PROCESSING TIME AND CLOUD OVERHEAD

the bottleneck that we will see is solely due to the intervention
of cloud.

A. Measuring Interaction Delay

As discussed previously in section II-A, minimizing in-
teraction delay is a fundamental design challenge for cloud
gaming developers and is thus a critical metric to measure. To
accurately measure interaction delay for Onlive and our local
game, we use the following technique. First, we install and
configure our test system with a video card tuning software,
MSI afterburner. It allows users to control many aspects of the
system’s GPU, even the fan speed. We however are interested
in its secondary uses, namely, the ability to perform accurate
screen captures of gaming applications. Second, we configure
our screen capture software to begin recording at 100 frames
per second when we press the “Z” key on the keyboard. The
Z key also corresponds to the “Zoom Vision” action in our
test game. We start the game and use the zoom vision action.
By looking at the resulting video file, we can determine the
interaction delay from the first frame that our action becomes
evident. Since we are recording at 100 frames per second,
we have a 10 millisecond granularity in our measurements.
To calculate the interaction delay in milliseconds, we take the
frame number and multiply by 10 ms. Since recording at 100
frames per second can be expensive in terms of CPU and hard
disk overhead we apply two optimizations to minimize the
influence that recording has on our games performance. First,
we resize the frame to 1/4 of the original image resolution.
Second, we apply Motion JPEG compression before writing

to the disc. These two optimizations allow us to record at 100
frames per second, while using less than 5% of the CPU and
writing only 1 MB/s to the disk.

To create network latencies, we set up a software Linux
router between our test system and Internet connection. On
our router we install the Linux network emulator Netem, which
allows us to control such network conditions as network delay.
We determine that our average base-line network Round Trip
Time (RTT) to Onlive is approximately 30 milliseconds with
a 2 ms standard deviation. For each experiment we collect
3 samples and average them. The results can be seen in
Figure 3, where the labels on the Onlive data points indicate
the added latency. For example, Onlive (+20 ms) indicates
that we added an additional 20 ms on the network delay,
bringing the total to 50 ms. Our locally rendered copy has
an average interaction delay of approximately 37 ms, whereas
our Onlive baseline takes approximately four times longer at
167 ms to register the same game action. As is expected,
when we simulate higher network latencies, the interaction
delay increases. Impressively, the Onlive system manages to
keep its interaction delay below 200 ms in many of our
tests. This indicates that for many styles of games Onlive
could provide acceptable interaction delays. However, when
the network latency exceeds 50 ms, the interaction delays may
begin to hinder the users’ experience. Also, even with our
baseline latency of only 30 ms, the system could not provide
an interaction delay of less than 100 ms, the expected threshold
for first person shooters.

We next further examine the delay into detailed components.
Returning to Figure 3, we define the processing time to be the
amount of interaction delay caused by the game logic, GPU
rendering, video encoding, etc; that is, it is the components of
the interaction delay not explained by the network latency.
For example, our locally rendered copy of the game has
no network latency; therefore its processing time is simply
37 ms. Our Onlive-base case, on the other hand, has its
communication delayed by approximately 30 ms due to the
network latency, meaning its processing time is approximately
137 ms. Finally, we calculate the cloud overhead, which we
define to be the delay not caused by the core game logic or
network latency. It includes the amount of delay caused by
the video encoder and streaming system used in Onlive. To
calculate this number, we subtract the local render processing
time of 37 ms from our Onlive experiment processing time.
Table II gives the interaction processing and cloud overhead
measured in our experiments. As can be seen, the cloud
processing adds about 100-120 ms of interaction delay to the
Onlive system. This finding indicates that the cloud processing
overhead alone is over 100 ms, meaning that any attempt to
reach this optimal interaction delay threshold will require more
efficient designs in terms of video encoders and streaming
software.

B. Measuring Image Quality

Just as critical as low interaction delay to a cloud game
player is image quality. As mentioned previously Onlive uses
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Fig. 5. Image Quality Comparison

a hardware H.264 encoder with a real-time encoding profile,
implying the compression will cause some degree of image
quality loss. Devising a methodology to objectively analyze
the image quality of a commercial cloud gaming system such
as Onlive has a number of technical challenges. First, to obtain
an accurate sample for the video quality analysis, we must
be able to record a deterministic sequence of frames from
Onlive and compare it to our local platform. Yet, although
the stream is known to be encoded by H.264, the stream
packets can hardly be directly captured and analyzed since
it appears that Onlive is using a proprietary version of the

Real Time Transport Protocol (RTP). The rendering settings
used by Onlive are not publicly visible, either. For example, it
remains unknown if Onlive has enabled anti-aliasing or what
the draw distance is for any game. With these issues in mind,
we have determined the following methodology to measure
Onlive image quality.

Once again we select the popular game Batman Arkham
Asylum as our test game, and we use the same test platform
described previously. To mitigate the effect that different
rendering settings have on the image quality, we choose the
pre-rendered intro movie of the game to record. To improve the



accuracy of our analysis, we unpack the intro video’s master
file from the game files of our local copy of Batman Arkham
Asylum. The extracted movie file has a resolution of 1280 x
720 pixels (720p), which perfectly matches the video streamed
by Onlive. We also configured our local copy of Batman to
run at a resolution of 1280 x 720 pixels. We configured our
display driver to force a frame rate of 30 FPS to match the
rate of target video. Next, we configure MSI afterburner to
record the video uncompressed with a resolution of 1280 x
720 pixels at 30 FPS. The lack of video compression is very
important as we do not want to taint the samples by applying
lossy compression.

We then capture the intro sequence of our locally running
game and Onlive running with different bandwidth limits.
To control the bandwidth, we again use our Linux software
router and perform traffic shaping to hit our targets. We
test Onlive running from its optimal bandwidth setting of
10 Mb/s gradually down to 3.0 Mb/s. It covers a broad
spectrum of bandwidths commonly available to residential
Internet subscribers. Before each run, we ensure our bandwidth
settings are correct by a probing test. After capturing all
the required video sequences, we select the same 40 second
(1200 frame) section from each video on which to perform
an image quality analysis. We analyze the video using two
classical metrics, namely Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Method (SSIM). The results
for PSNR are given in Figure 4a and SSIM are given in
Figure 4b, respectively. The PSNR method quantifies the
amount of error (noise) in the reconstructed video, which has
been added during compression. The SSIM method calculates
the structural similarity between the two video frames. As can
be seen, our local capture scored a high PSNR and SSIM;
however it is not perfect, indicating some difference in the
recorded video and the master file. Much of this difference is
likely due to slightly different brightness and colour settings
used by the internal video player in the Batman game engine.
When the local capture is compared to Onlive running at any
connection rate, we can see a large drop in terms of both PSNR
and SSIM. Since PSNR and SSIM are not on a linear scale,
the drops actually indicate a considerable degradation in image
quality. Generally a PSNR of 30 dB and above is considered
good quality, however 25 and above is considered acceptable
for mobile video streaming. Not surprisingly, as we drop our
test systems connection bandwidth the image quality begins
to suffer considerable degradation as well. With the exception
of the 3.0 Mb/s test, all samples stay above a PSNR of 25
dB; so although there is room for improvement, the image
quality is still acceptable. Figure 5 illustrates the effect of
Onlive’s compression taken from a single frame of the opening
sequence. As can be seen the effect of compression is quite
noticeable especially as the amount of available bandwidth
decreases.

V. CONCLUSION AND FURTHER DISCUSSION

This article has closely examined the framework design
of state-of-the-art cloud gaming platforms. We have also

measured the performance of Onlive, one of the most repre-
sentative and successful cloud gaming platforms to date. The
results, particularly on interaction latency and streaming qual-
ity under diverse game, computer, and network configurations,
have revealed the potentials of cloud gaming as well as the
critical challenges toward its widespread deployment. For a
future work we would like to further investigate the effect
other network conditions such as packet loss and jitter have
on the end users cloud gaming experience.

Cloud gaming is a rapidly evolving technology, with many
exciting possibilities. One frequently mentioned is to bring
advanced 3D content to relatively weaker devices such as
smart phones and tablets. This observation is made even
more relevant by the fact that both Gaikai and Onlive are
actively working on Android apps to bring their services to
these mobile platforms. However, recent large scale research
indicates that it is not uncommon to find cellular network
connections that have network latencies in excess of 200
ms [7], which alone may already cause the interaction delay
to become too high for many games. Seamless integration
between cellular data connection and the lower latency WiFi
connection is expected, and the switching to LTE may help
alleviate the problem. Other potential advancements involve
intelligent thin clients that can perform a portion of the game
rendering and logic locally to hide some of the issues asso-
ciated with interaction delay, or distributed game execution
across multiple specialized virtual machines [8]. This will
likely require creating games specifically optimized for cloud
platforms.

Besides software and service providers, hardware manufac-
turers have also shown a strong interest in cloud gaming, and
some have begun working on dedicated hardware solutions
to address the prominent issues of cloud gaming. NVIDIA
has just unveiled the GeForce grid graphical processor, which
is targeted specifically towards cloud gaming systems [9]. It
is essentially an all in one graphical processor and encoding
solution. The published specification shows that each of these
processors has enough capability to render and encode four
games simultaneously. NVIDIA’s internal tests show that it can
significantly mitigate the latency introduced in current cloud
gaming systems [10]. It is widely expected that this type of
specialized hardware will usher in a new generation of cloud
gaming.
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