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Related work
m Ostomachion process (Fan et al. 2016)

m Binary space partitioning tree process (Fan et al. 2018)
m Binary space partitioning forests (Fan et al. 2019)
m Stable iterated tessellations (Nagel and Weiss. 2005)

m Mondrian forests (Lakshminarayanan et al. 2014)
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Notation

m A tessellation Y(W) of a set W C R? is a finite set of polytopes s.t.:

U a=W, and V a,b € Y(W), interior(a) [ ) interior(b) = @.
acY(Ww)

m A polytope is a bounded, nonempty intersection of closed half-planes.

m Let [S] be the set of affine hyperplanes in RY intersecting S C W.
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Stable iterated tessellations

Any measure A on H = [W] induces a tessellation-valued MJP:

Algorithm 1 Generative Process for RTPs

: Inputs: a) Bounded domain W, b) RTP measure A on H, c) prespecified budget 7.
: Outputs: A realisation of the Random Tessellation Process (¥3)o<¢<r-

79 < 0.

: Y() — {W}
: while 79 < 7 do

Sample 7' ~ Exp (ZaerA([a])).

SetY; < Y7, forall t € (1o, min{7, 79 + 7'}].

Set g < 19 + 7.

if 7o < 7 then
Sample a polytope a from the set Y, with probability proportional to (w.p.p.t.) A([a]).
Sample a hyperplane & from [a] according to the probability measure A(- N [a])/A([a]).
Y., + (Yo, /{a})U{anh~,anh*}. (b~ and h™ are the h-bounded closed half planes.)

else

return the tessellation-valued right-continuous MJP sample (Y;)o<¢<~-
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Conditions for projectivity

m Theorem [Nagel and Weiss 2005]. If A is translation invariant and
symmetric and supported on an orthogonal set of d hyperplanes, then
for all measurable subsets W C W, Y(W') =4 Y(W)n W'
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Random Tessellation Processes

m Every hyperplane h € H can be written uniquely as:

h={P:(n,P—un) =0} st.ne S9! uecRs.
m Then, ¢ : S971 x Rsg +— H by ¢(n, u) = h is a bijection.

m Any measure A on H is induced by a measure Ao ¢ on S971 x R>o.
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Random Tessellation Processes

m Let Ao ¢ be the product measure A9 x A, such that A7 is symmetric
and Ay is the Lebesgue measure on R>q.

m Theorem. A o ¢ is translation invariant and symmetric. (Proof in the
Supplementary Material.)

m We refer to such A as Random Tessellation Process (RTP) measures.

m All RTP measures induce projective tessellations.
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Relation to cutting Bayesian nonparametrics

m The Mondrian process is an RTP with \? a set of delta functions on
the poles of S9! (MRTP).

m The binary space partitioning tree process is an RTP with A9 the
uniform measure on the sphere (uRTP).

m The binary space partitioning forest is an RTP with A? a convolution
between uniform measures and delta functions.

m Weighted versions of these RTPs encode priors over variable
importance: wMRTP, wuRTP.
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Modelling data with RTPs

m For categorical data, we associate beta/Bernoulli parameters to each
polytope, yielding an RTP posterior.

The Mondrian cube dataset
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Inference

m We derive a sequential Monte Carlo (SMC) algorithm for inference.

m We consider random forest versions of RTPs (uURTF, MRTF and
wuRTF, wMRTF).

m We also implement an efficient RTF in a similar way to the Mondrian
forest (Lakshminarayanan et al. 2015), in which likelihoods are
dropped from the SMC sampler (uURTF.i and MRTF.i). We also use
pausing conditions: 7 = 00, and spherical approximations.
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Inference

Algorithm 2 SMC for inferring RTP posteriors

1:

Inputs: a) Training dataset V', Z, b) RTP measure A on H, c¢) prespecified budget 7, d) likelihood
hyperparameter c.

: Outputs: Approximate RTP posterior ZAmI: 1m0 . at time 7. (w,, are particle weights.)

: Set7, «+ 0, form=1,...,M.

: Set@o,n(—{hull v}, wm<—1/]u form=1,..., M.

. while min{7,,,}}/_; < 7 do

Resample N, from {Dr, i }N_) wppt. {oom )y form=1,... M.
Set {Nr,m @’ e form=1,... M.

Set @, + 1/M, for m = 1,‘..,]\1.
forme{m:m=1,...,Mand 7, <7}do

Sample 7’ ~Exp (Zae& Ta>. (74 is the radius of the smallest closed ball containing a.)

Set Mm < Ooryyoms forall t € (7, min{7, 7,,, + 7'}
if 7, + 7' < 7 then
Sample a from the set {>r,, m W.p.p.I Tq.
Sample & from [a] according to A(- N [a])/A([a]) using Section 2.2.1.
Set P,y m < (Drym/{a}) U {hu]l(V Nanh~™),ull(VNnanht)}.
Set @y, < @ P(Z|>rymy V, @)/ P(Z|D, 1, V, @) according to (3).
else
Set &t,m — &7”‘ ,ms for te (Tvrm T]-
Set 7o, e Tm + 7.
Set Z + Z —1 @m.
Set @,, + wm/Z form=1,...,M.

22: return the particle approximation Zf\:{:l Wi O Dorm
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Results
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m 5CZ93: SCZ51+SCZ51.
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Results

Dataset BL LR SVM RF  MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

GL85 70.34 58.13 70.34 73.01 70.74 70.06 77.09 70.60 80.57 84.90
S5CZ42 46.68 b7.65 46.79 51.76 49.56 48.50 49.91 47.71 53.12 53.97
S5CZ51 46.55 51.15 46.67 57.38 52.55 48.58 57.95 44.70 58.12 49.05
S5CZ93 48.95 53.05 50.15 52.45 50.23 50.24 51.80 50.34 53.12 54.99

Table: Percent correct. Bold indicates nominal conservative sign test significance.
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Future work

Relax spherical approximation.

Hypermanifold cutting.

m Online PG inference.

m Additive regression trees.

21/21



