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Figure 2: Generating a cutting hyperplane in one branch of an example 3-dimensional BSP-tree whose root node is a unit
cube. We use red-line constituted polyhedrons (or polygons) to denote the sampled ones; the three dashed polygons in
Step (2) denote all the two-dimensional projections of the polygon sampled in Step (1). The generations of ✓ and uuu on a
two-dimensional projection (green dashed polygon) in Step (3) follows the same way as in [8].

3 Extending the BSP-tree process to

d-dimensional space

One motivation for extension of the BSP-tree process to
multi-dimensional space is regression. Here, we might
have N labelled datapoints {(xxxi, yi)}Ni=1 2 Rd

⇥R, where
we aim to predict the unknown labels yi 2 R from the d-
dimensional predictors xxxi 2 Rd. Other applications, such
as classification, simply require straightforward changes to
the likelihood constructions for the labels.

The proposed multidimensional BSP-Tree process works
similarly as its original version. It is still a continuous-time
Markov jump process where, for ⌧l+1 > ⌧l > 0, the value
taken at ⌧l+1, which is denoted as �⌧l+1 , is a BSP-Tree
partition in a convex polyhedron ⇤ ⇢ Rd and also a further
refinement of the value taken at time ⌧l (see Figure 1). For
the domain (root node) ⇤ ⇢ Rd, the partition result �⌧l

is composed of a set of convex polyhedrons
�
{⇤k}k2N+ :

[k⇤k = ⇤;⇤k0 \⇤k00 = ;, 8k
0
6= k

00 and is recursively
generated through a series of cutting hyperplanes.

In order to extend the domain of the BSP-Tree process
to d-dimensional (d > 2) space while still keeping its
self-consistency, we consider a reduced generative process
where each cutting hyperplane is only allowed to have two
degrees (dimensions) of freedom. In this way, each poten-
tial cutting hyperplanes on ⇤k is assumed to be parallel to
the rest d� 2 dimensions, except the selected two.

Given the current partition �⌧l�1 = {⇤(k)
⌧l�1}

l

k=1 and ⌧ , the
next cutting hyperplane is generated in the following steps
(see the illustrations for Steps 1–4 in Figure 2):

(1) Sample a candidate polyhedron (leaf node) ⇤(⇤) from
all the existing leaf nodes {⇤(k)

⌧l�1}
l

k=1 in proportion

to
nP

d1,d2
PE(⇧d1,d2(⇤

(k)
⌧l�1))

ol

k=1
, where (d1, d2)

denotes an arbitrary pair of dimensions from the d

dimensions, ⇧d1,d2(⇤) denotes the projection of ⇤
onto the dimensions of (d1, d2), and PE(⇧d1,d2(⇤))
denotes the perimeter of the projection (i.e., a 2-
dimensional polygon);

(2) Sample a pair of free dimensions (d(⇤)1 , d
(⇤)
2 ) from

all 1/2 · d(d � 1) possible pairs in proportion to�
PE(⇧d1,d2(⇤(⇤)))

 
(d1,d2)

;

(3) On the projection ⇧
d
(⇤)
1 ,d

(⇤)
2

(⇤(⇤)), sample a direction
✓ from (0,⇡], where the probability density function
is in proportion to the length of the line segment lll(✓),
onto which ⇧

d
(⇤)
1 ,d

(⇤)
2

(⇤(⇤)) is projected in the direc-
tion of ✓; and sample the cutting position uuu uniformly
on the line segment lll(✓). The proposed cutting hyper-
plane is formed as the straight line passing through uuu

and crossing through the projection ⇧
d
(⇤)
1 ,d

(⇤)
2

(⇤(⇤)),

orthogonal to lll(✓) in the dimensions of (d(⇤)1 , d
(⇤)
2 )

and parallel to the rest d� 2 dimensions1;

(4) Sample the incremental time for the new cut as (⌧l �

⌧l�1) ⇠ Exp
⇣P

l

k=1

P
(i,j)2D PE(⇧di,dj (⇤

(k)
⌧l�1))

⌘
.

If ⌧l > ⌧ , reject the proposed cutting hyperplane
and return {⇤(k)

⌧l�1}
l

k=1 as the final partition structure;
otherwise accept the proposed cutting hyperplane, in-
crease l to l + 1 and go back to Step (1).

Sampling a two-dimensional pair (Step (2)) is the novel
key step that helps extend the BSP-tree process to d-
dimensional spaces; all other steps are the natural and
logical extensions of the generative process of the two-
dimensional BSP-tree process.

Through the above generative process, the cutting hyper-
plane can be parameterised as H(k, (d1, d2), ✓,uuu) = {xxx 2

⇤(k⇤)
|([xd1 , xd2 ] � uuu)(1; tan ✓)> = 0}, where k

⇤ denotes
the index of the selected polygon (leaf node), xd1 denotes
the d1-th element of vector xxx, and uuu is a two-dimensional
vector denoting the position on the dimensions of (d1, d2).
The cutting hyperplane is parallel to all dimensions except
d1 and d2 such that it is fully characterised on (d1, d2).

1Generating a cutting line parameterized by ✓ and uuu on the
projection ⇧

d
(⇤)
1 ,d

(⇤)
2

(⇤(⇤)) (two-dimensional polygon) follows
the same sampling method used in the BSP-Tree process [8].
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Notation

A tessellation Y (W ) of a set W ⊆ Rd is a finite set of polytopes s.t.:

∪
a∈Y (W )

a=W , and ∀ a, b ∈ Y (W ), interior(a)∩ interior(b) = ∅.

A polytope is a bounded, nonempty intersection of closed half-planes.

Let [S ] be the set of affine hyperplanes in Rd intersecting S ⊆W .

Figure 1: A draw from the uRTP prior with domain given by a four dimensional hypercube
(x, y, z, w) 2 [�1, 1]4. Intersections of the draw and the three dimensional cube are shown for
w=�1, 0, 1. Colours indicate polytope identity, and are randomly assigned.

self-consistent, and so the binary space partitioning-tree (BSP) process [9] was introduced to modify
the cut distribution of the OP in order to recover self-consistency. The main limitation of the OP
and the BSP is that they are not defined for dimensions larger than two (i.e., they are restricted to
data with two predictors). To relax this constraint, in [10] a self-consistent version of the BSP was
extended to arbitrarily dimensioned space (called the BSP-forest). But for this process each cutting
hyperplane is axis-aligned in all but two dimensions (with non-axis alignment allowed only in the
remaining two dimensions, following the specification of the two dimensional BSP).

In this work, we propose the Random Tessellation Process (RTP), a framework for describing
Bayesian nonparametric models based on cutting multi-dimensional Euclidean space. We consider
four versions of the RTP, including a generalisation of the Mondrian process with non-axis aligned
cuts (a sample from this prior is shown in Figure 1), a formulation of the Mondrian process as an RTP,
and weighted versions of these two methods (shown in Figure 2). By virtue of their construction, all
versions of the RTP are self-consistent, and are based on the theory of stable iterated tessellations in
stochastic geometry [24]. The partitions induced by the RTP prior are described by a set of polytopes.

We derive a sequential Monte Carlo (SMC) algorithm [8] for RTP inference, which takes advantage
of the hierarchical structure of the generating process for the polytope tree, and we also propose
a random forest version of RTPs, which we refer to as Random Tessellation Forests (RTFs). We
apply our proposed model to simulated data and several gene expression datasets, and demonstrate its
effectiveness compared to other modern machine learning methods.

2 Methods

Suppose we observe a dataset (v1, z1), . . . , (vn, zn), for a classification task in which vi 2 Rd are
predictors and zi 2 {1, . . . ,K} are labels (with K levels, K 2 N>1). Bayesian nonparametric
models based on partitioning the predictors proceed by placing a prior on aspects of the partition, and
associating likelihood parameters with the blocks of the partition. Inference is then done on the joint
posterior of the parameters and the structure of the partition. In this section, we develop the RTP: a
unifying framework that covers and extends such Bayesian nonparametric models, through a prior on
partitions of (v1, z1), . . . , (vn, zn) induced by tessellations.

2.1 The Random Tessellation Process

A tessellation Y of a bounded domain W ✓ Rd is a finite collection of closed polytopes such that the
union of the polytopes is all of W , and such that the polytopes have pairwise disjoint interiors [6]. We
denote tessellations of W by Y(W ) or the symbol . A polytope is an intersection of finitely many
closed half-spaces. In this work we will assume that all polytopes are bounded and have nonempty
interior. An RTP Yt(W ) is a tessellation-valued right-continuous Markov jump process (MJP)
defined on [0, ⌧ ] (we refer to the t-axis as time), in which events are cuts (specified by hyperplanes)
of the tessellation’s polytopes, and ⌧ is a prespecified budget [2]. In this work we assume that all
hyperplanes are affine (i.e., they need not pass through the origin).

2
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Stable iterated tessellations

Any measure Λ on H = [W ] induces a tessellation-valued MJP:

interior. An RTP Yt(W ) is a tessellation-valued right-continuous Markov jump process (MJP)
defined on [0, ⌧ ] (we refer to the t-axis as time), in which events are cuts (specified by hyperplanes)
of the tessellation’s polytopes, and ⌧ is a prespecified budget [2]. In this work we assume that all
hyperplanes are affine (i.e., they need not pass through the origin).

The initial tessellation Y0(W ) contains a single polytope given by the convex hull of the observed
predictors in the dataset: W = hull{v1, . . . , vn} (the operation hull A denotes the convex hull of the
set A). In the MJP for the random tessellation process, each polytope has an exponentially distributed
lifetime, and at the end of a polytope’s lifetime, the polytope is replaced by two new polytopes. The
two new polytopes are formed by drawing a hyperplane that intersects the interior of the old polytope,
and then intersecting the old polytope with each of the two closed half-spaces bounded by the drawn
hyperplane. We refer to this operation as cutting a polytope according to the hyperplane. These
cutting events continue until the prespecified budget ⌧ is reached.

Let H be the set of hyperplanes in Rd. Every hyperplane h 2 H can be written uniquely as the set of
points {P : h*n, P � u *ni = 0}, such that *n2 Sd�1 is a normal vector of h, and u 2 R�0 (u � 0).
Here Sd�1 is the unit (d� 1)-sphere (i.e., Sd�1 = {*n2 Rd : k*n k = 1}). Thus, there is a bijection
' : Sd�1 ⇥ R�0 7�! H by '(*n, u) = {P : h*n, P � u *ni = 0}, and therefore a measure ⇤ on H
is induced by any measure ⇤ � ' on Sd�1 ⇥ R�0 through this bijection [20, 6].

In [27] Section 2.1, Nagel and Weiss describe a random tessellation associated with a measure ⇤ on H
through a tessellation-valued MJP Yt such that the rate of the exponential distribution for the lifetime
of a polytope a 2 Yt is ⇤([a]) (here and throughout this work, [a] denotes the set of hyperplanes
in Rd that intersect the interior of a), and the hyperplane for the cutting event for a polytope a is
sampled according to the probability measure ⇤(·\ [a])/⇤([a]). We use this construction as the prior
for RTPs, and describe their generative process in Algorithm 1. This algorithm is equivalent to the
first algorithm listed in [27].

Algorithm 1 Generative Process for RTPs

1: Inputs: a) Bounded domain W, b) RTP measure ⇤ on H, c) prespecified budget ⌧ .
2: Outputs: A realisation of the Random Tessellation Process (Yt)0t⌧ .
3: ⌧0  0.
4: Y0  {W}.
5: while ⌧0  ⌧ do
6: Sample ⌧ 0 ⇠ Exp

⇣P
a2Y⌧0

⇤([a])
⌘

.
7: Set Yt  Y⌧0 for all t 2 (⌧0, min{⌧, ⌧0 + ⌧ 0}].
8: Set ⌧0  ⌧0 + ⌧ 0.
9: if ⌧0  ⌧ then

10: Sample a polytope a from the set Y⌧0 with probability proportional to (w.p.p.t.) ⇤([a]).
11: Sample a hyperplane h from [a] according to the probability measure ⇤(· \ [a])/⇤([a]).
12: Y⌧0  (Y⌧0/{a})[{a\h�, a\h+}. (h� and h+ are the h-bounded closed half planes.)
13: else
14: return the tessellation-valued right-continuous MJP sample (Yt)0t⌧ .

2.1.1 Self-consistency of Random Tessellation Processes

From Theorem 1 in [27], if the measure ⇤ is invariant with respect to translation (i.e., ⇤(A) =
⇤({h + x : h 2 A}) for all measurable subsets A ⇢ H and x 2 Rd), and if a set of d hyperplanes
with orthogonal normal vectors is contained in the support of ⇤, then for all bounded domains
W 0 ✓ W , Yt(W

0) is equal in distribution to Yt(W ) \W 0. This means that self-consistency holds
for the random tessellations associated with such ⇤. (Here, for a hyperplane h, h + x refers to
the set {y + x : y 2 h}, and for a tessellation Y and a domain W 0, Y \W 0 is the tessellation
{a \W 0 : a 2 Y }.) In [27], such tessellations are referred to as stable iterated tessellations.

If we assume that ⇤ � ' is the product measure �d ⇥ �+, with �d symmetric (i.e., �d(A) = �d(�A)
for all measurable sets A ✓ Sd�1) and further that �+ is given by the Lebesgue measure on R�0,
then ⇤ is translation invariant (a proof of this statement is given in Appendix A, Lemma 1 of the
Supplementary Material). So, through Algorithm 1 and Theorem 1 in [27], any distribution �d on the
sphere Sd�1 that is supported on a set of d hyperplanes with orthogonal normal vectors gives rise to

3
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Conditions for projectivity

Theorem [Nagel and Weiss 2005]. If Λ is translation invariant and
symmetric and supported on an orthogonal set of d hyperplanes, then
for all measurable subsets W ′ ⊆W , Y (W ′) =d Y (W ) ∩W ′.
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Random Tessellation Processes

Every hyperplane h ∈ H can be written uniquely as:

h = {P : 〈n,P − un〉 = 0} s.t. n ∈ Sd−1, u ∈ R≥0.

Then, ϕ : Sd−1 × R≥0 7−→ H by ϕ(n, u) = h is a bijection.

Any measure Λ on H is induced by a measure Λ ◦ ϕ on Sd−1 × R≥0.

13 / 21



Random Tessellation Processes

Let Λ ◦ ϕ be the product measure λd × λ+ such that λd is symmetric
and λ+ is the Lebesgue measure on R≥0.

Theorem. Λ ◦ ϕ is translation invariant and symmetric. (Proof in the
Supplementary Material.)

We refer to such Λ as Random Tessellation Process (RTP) measures.

All RTP measures induce projective tessellations.

14 / 21



Relation to cutting Bayesian nonparametrics

The Mondrian process is an RTP with λd a set of delta functions on
the poles of Sd−1 (MRTP).

The binary space partitioning tree process is an RTP with λd the
uniform measure on the sphere (uRTP).

The binary space partitioning forest is an RTP with λd a convolution
between uniform measures and delta functions.

Weighted versions of these RTPs encode priors over variable
importance: wMRTP, wuRTP.
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Modelling data with RTPs

For categorical data, we associate beta/Bernoulli parameters to each
polytope, yielding an RTP posterior.

of ⇤([·]) described in Section 2.2.2. For brevity, the pausing condition described in Section 2.2.2 is
omitted from Algorithm 2.

In our experiments, after using Algorithm 2 to yield a posterior estimate
PM

m=1 $m
�

⌧,m
, we select

the tessellation ⌧,m0 with the largest weight $m (i.e., we do not conduct resampling at the last
SMC iteration). We then compute posterior probabilities of the test dataset labels using the particle

⌧,m0 . This method of selecting a particle with largest weight after SMC is recommended in [7] for
lowering asymptotic variance in SMC estimates.

The computational complexity of Algorithm 2 depends on the number of polytopes in the tessellations,
and the organization of the labels within the polytopes. The more linearly separable the dataset is, the
sooner the pausing conditions are met. The complexity of computing the spherical approximation in
Section 2.2.2 (the radius ra) for a polytope a is O(|V \ a|2), where | · | denotes set cardinality.

2.2.4 Prediction with Random Tessellation Forests

xy

z

%
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0 100 200

60
70

80
90

10
0

uRTP
MRTP
LR
DT
SVM

Figure 3: Left) A view of the Mondrian cube,
with cyan indicating label 1, magenta indicat-
ing label 2, and black delineating label bound-
aries. Right) Percent correct versus number of
cuts for predicting Mondrian cube test dataset,
with uRTP, MRTP and a variety of baseline
methods.

Random forests are commonly used in machine learn-
ing for classification and regression problems [3]. A
random forest is represented by an ensemble of de-
cision trees, and predictions of test dataset labels are
combined over all decision trees in the forest. To im-
prove the performance of our methods, we consider
random forest versions of RTPs (which we refer to
as RTFs: uRTF, wuRTF, MRTF, wMRTF are random
forest versions of the uRTP, MRTP and their weighted
versions resp.). We run Algorithm 2 independently
T times, and make predictions using the mode of the
T tessellations. Differing from [3], we do not use
bagging.

In [20], Lakshminarayanan, Roy and Teh consider
an efficient Mondrian forest in which likelihoods are
dropped from the SMC sampler and cutting is done in-
dependent of likelihood. This method follows recent
theory for random forest methods [14]. We imple-
ment this method (by dropping line 19 of Algorithm 2) and refer to it these as the uRTF.i and MRTF.i
(i.e., these are the uniform and Mondrian RTFs in which the likelihood is dropped during SMC).

3 Experiments

In Section 3.1, we explore a simulation study that shows differences among uRTP and MRTP, and
some standard machine learning methods. Variations in gene expression across tissues in brain regions
play an important role in disease status, and are associated with disease symptoms. In Section 3.2, we
examine predictions of a variety of RTF models for gene expression data. For all our experiments, we
set the likelihood hyperparameters for the RTPs and RTFs to the empirical estimates ↵k to nk/1000.
Here nk =

Pn
i=1 �(zi = k). In all of our experiments, for each train/test split, we allocate 60% of

the data items at random to the training set.

An implementation of our methods (including the RTP view of Mondrian processes with the like-
lihoods described in Section 2.1.3) are provided in the Supplementary Material. This software is
released under the open source BSD 2-clause license. A manual for this software is provided in
Appendix C of the Supplementary Material.

3.1 Simulations on the Mondrian cube

We consider a simulated three dimensional dataset designed to exemplify the difference between
axis-aligned and non-axis aligned models. We refer to this dataset as the Mondrian cube, and we
investigate the performance of uRTP and the MRTP on this dataset, along with some standard machine
learning approaches, varying the number of cuts in the processes. The Mondrian cube dataset is
simulated as follows: first, we sample 10,000 points uniformly in the cube [0, 1]3. Points falling in

7

The Mondrian cube dataset
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Inference

We derive a sequential Monte Carlo (SMC) algorithm for inference.

We consider random forest versions of RTPs (uRTF, MRTF and
wuRTF, wMRTF).

We also implement an efficient RTF in a similar way to the Mondrian
forest (Lakshminarayanan et al. 2015), in which likelihoods are
dropped from the SMC sampler (uRTF.i and MRTF.i). We also use
pausing conditions: τ =∞, and spherical approximations.
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Inference

and h� are the two closed half planes bounded by h, and / is the set minus operation. This requires a
slight loosening of the definition of a tessellation Y of a bounded domain W to allow the union of
the polytopes of a tessellation Y to be a strict subset of W such that V ✓ [a2Y a.

In our computations, we do not need to explicitly compute these convex hulls, and instead for any
polytope b, we store only b \ V , as this is enough to determine whether or not a hyperplane h
intersects hull(b \ V ). This membership check is the only geometric operation required to sample
hyperplanes intersecting b according to the rejection sampling scheme from Section 2.2.1. By the
self-consistency of RTPs, this has the effect of marginalizing out MJP events involving cuts that do
not further separate the predictors in the dataset. This also obviates the need for explicit computation
of the facets of polytopes, significantly simplifying the codebase of our implementation of inference.

After this convex hull replacement operation, a data item in the test dataset may not be contained in
any polytope, and so to conduct posterior inference we augment the training dataset with a version
of the testing dataset in which the label is missing, and then marginalise the missing label in the
likelihood described in Section 2.1.3.

Spherical approximation. Every hyperplane intersecting a polytope a also intersects a closed ball
containing a. Therefore, for any RTP measure ⇤, ⇤([a]) is upper bounded by ⇤([B(ra)]). Here ra

is the radius of the smallest closed ball containing a. We approximate ⇤([a]) ' ⇤([B(ra)]) for use
in polytope lifetime calculations in our uRTP inference and we do not compute ⇤([a]) exactly. For
the uRTP and wRTP, ⇤([B(ra)]) = ra. A proof of this is given in Appendix A, Lemma 3 of the
Supplementary Material. For the MRTP and wMRTP, ⇤([a]) can be computed exactly [29].

Pausing condition. In our posterior inference, if zi = zj for all i, j such that vi, vj 2 a, then we
pause the polytope a and no further cuts are performed on this polytope. This improves computational
efficiency without affecting inference, as cutting such a polytope cannot further separate labels. This
was done in recent work for Mondrian processes [21] and was originally suggested in the Random
Forest reference implementation [4].

2.2.3 Sequential Monte Carlo for Random Tessellation Process inference

Algorithm 2 SMC for inferring RTP posteriors

1: Inputs: a) Training dataset V , Z, b) RTP measure ⇤ on H , c) prespecified budget ⌧ , d) likelihood
hyperparameter ↵.

2: Outputs: Approximate RTP posterior
PM

m=1$m�
⌧,m

at time ⌧ . ($m are particle weights.)
3: Set ⌧m  0, for m = 1, . . . , M .
4: Set 0,m  {hull V }, $m  1/M , for m = 1, . . . , M .
5: while min{⌧m}M

m=1 < ⌧ do
6: Resample 0

⌧m,m from { ⌧m,m}M
m=1 w.p.p.t. {$m}M

m=1, for m = 1, . . . , M .
7: Set ⌧m,m  0

⌧m,m, for m = 1, . . . , M .
8: Set $m  1/M , for m = 1, . . . , M .
9: for m 2 {m : m = 1, . . . , M and ⌧m < ⌧} do

10: Sample ⌧ 0⇠Exp
⇣P

a2 ⌧m,m
ra

⌘
. (ra is the radius of the smallest closed ball containing a.)

11: Set t,m  ⌧m,m, for all t 2 (⌧m, min{⌧, ⌧m + ⌧ 0}].
12: if ⌧m + ⌧ 0  ⌧ then
13: Sample a from the set ⌧m,m w.p.p.t. ra.
14: Sample h from [a] according to ⇤(· \ [a])/⇤([a]) using Section 2.2.1.
15: Set ⌧m,m  ( ⌧m,m/{a}) [ {hull(V \ a \ h�), hull(V \ a \ h+)}.
16: Set $m  $mP (Z| ⌧m,m, V ,↵)/P (Z| 0

⌧m,m, V ,↵) according to (3).
17: else
18: Set t,m  ⌧m,m, for t 2 (⌧m, ⌧ ].
19: Set ⌧m  ⌧m + ⌧ 0.
20: Set Z  PM

m=1 $m.
21: Set $m  $m/Z , for m = 1, . . . , M .
22: return the particle approximation

PM
m=1 $m�

⌧,m
.
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Results

GL85: X = gene expression in
glioblastoma tissue, Y =
astrocytoma grade (N = P = 85).

SCZ42: X = gene expression in
superior temporal cortex, Y =
schizophrenia indicator
(N = P = 42).

SCZ51: X = gene expression in
anterior prefrontal cortex, Y =
schizophrenia indicator
(N = P = 51).

SCZ93: SCZ51+SCZ51.

the cube [0, 0.25]3 or the cube [0.25, 1]3 are given label 1, and the remaining points are given label
2. Then, we centre the points and rotate all of the points by the angles ⇡

4 and �
⇡
4 about the x-axis

and y-axis respectively, creating a dataset organised on diagonals. In Figure 3(left), we display a
visualization of the Mondrian cube dataset, wherein points are colored by their label. We apply the
SMC algorithm to the Mondrian cube data, with 50 random train/test splits. For each split, we run 10
independent copies of the uRTP and MRTP, and we also examine the accuracy of logistic regression
(LR), a decision tree (DT) and a support vector machine (SVM).

Figure 3(right) shows that the percent correct for the uRTP and MRTP both increase as the number
of cuts increases, and plateaus when the number of cuts becomes larger (greater than 25). Even
though the uRTP has lower accuracy at the first cut, it starts dominating the MRTP after the second
cut. Overall, in terms of percent correct, with any number of cuts > 105, a sign test indicates that
the uRTP performs significant better than all other methods at nominal significance, and the MRTP
performs significant better than DT and LR for any number of cuts > 85 at nominal significance.

3.2 Experiment on gene expression data in brain tissue
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Figure 4: Box plot showing wuRTF and
wMRTF improvements for GL85, and
generally best performance for wuRTF
method (with sign test p-value of 3.2⇥
10�9

vs wMRTF). Reduced performance
of SVM indicates structure in GL85 that
is not linearly separable. Medians, quan-
tiles and outliers beyond 99.3% coverage
are indicated.

We evaluate a variety of RTPs and some standard ma-
chine learning methods on a glioblastoma tissue dataset
GSE83294 [13], which includes 22,283 gene expression
profiles for 85 astrocytomas (26 diagnosed as grade III
and 59 as grade IV). We also examine schizophrenia brain
tissue datasets: GSE21935 [1], in which 54,675 gene ex-
pression in the superior temporal cortex is recorded for 42
subjects, with 23 cases (with schizophrenia), and 19 con-
trols (without schizophrenia), and dataset GSE17612 [22],
a collection of 54,675 gene expressions from samples in
the anterior prefrontal cortex (i.e., a different brain area
from GSE21935) with 28 schizophrenic subjects, and 23
controls. We refer to these datasets as GL85, SCZ42 and
SCZ51, respectively.

We also consider a combined version of SCZ42 and SCZ51

(in which all samples are concatenated), which we re-
fer to as SCZ93. For GL85 the labels are the astrocy-
toma grade, and for SCZ42, SCZ51 and SCZ93 the labels
are schizophrenia status. We use principal components
analyais (PCA) in preprocessing to replace the predictors
of each data item (a set of gene expressions) with its scores
on a full set of principal components (PCs): i.e., 85 PCs
for GL85, 42 PCs in SCZ42 and 51 PCs in SCZ51. We
then scale the PCs. We consider 200 test/train splits for
each dataset. These datasets were acquired from NCBI’s
Gene Expression Omnibus1 and were are released under
the Open Data Commons Open Database License. We
provide test/train splits of the PCA preprocessed datasets
in the Supplementary Material.

So, through this preprocessing, the j-th predictor is the score vector of the j-th principal component.
For the weighted RTFs (the wuRTF and wMRTF), we set the weight of the j-th predictor to be
proportional to the variance explained by the j-th PC (�2

j ): !j = �
2
j . We set the number of trees in

all of the random forests to 100, which is the default in R’s randomForest package [21]. For the all
RTFs, we set the budget ⌧ = 1, as is done in [19].

4 Results

We compare percent correct for the wuRTF, uRTF, uRTF.i, and the Mondrian Random Tessellation
Forests wMRTF, MRTF and MRTF.i, a random forest (RF), logistic regression (LR), a support vector

1Downloaded from https://www.ncbi.nlm.nih.gov/geo/ in Spring 2019.
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Results

Dataset BL LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

GL85 70.34 58.13 70.34 73.01 70.74 70.06 77.09 70.60 80.57 84.90
SCZ42 46.68 57.65 46.79 51.76 49.56 48.50 49.91 47.71 53.12 53.97
SCZ51 46.55 51.15 46.67 57.38 52.55 48.58 57.95 44.70 58.12 49.05
SCZ93 48.95 53.05 50.15 52.45 50.23 50.24 51.80 50.34 53.12 54.99

Table: Percent correct. Bold indicates nominal conservative sign test significance.
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Future work

Relax spherical approximation.

Hypermanifold cutting.

Online PG inference.

Additive regression trees.
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